

SQL Solved Questions

1. How to select UNIQUE records

from a table using a SQL Query?

Consider below EMPLOYEE table as the source data

CREATE TABLE EMPLOYEE (
 EMPLOYEE_ID NUMBER(6,0),

 NAME VARCHAR2(20),

 SALARY NUMBER(8,2)

);

INSERT INTO EMPLOYEE(EMPLOYEE_ID,NAME,SALARY) VALUES(100,'Jennifer',4400);

INSERT INTO EMPLOYEE(EMPLOYEE_ID,NAME,SALARY) VALUES(100,'Jennifer',4400);

INSERT INTO EMPLOYEE(EMPLOYEE_ID,NAME,SALARY) VALUES(101,'Michael',13000);

INSERT INTO EMPLOYEE(EMPLOYEE_ID,NAME,SALARY) VALUES(101,'Michael',13000);

INSERT INTO EMPLOYEE(EMPLOYEE_ID,NAME,SALARY) VALUES(101,'Michael',13000);

INSERT INTO EMPLOYEE(EMPLOYEE_ID,NAME,SALARY) VALUES(102,'Pat',6000);

INSERT INTO EMPLOYEE(EMPLOYEE_ID,NAME,SALARY) VALUES(102,'Pat',6000);

INSERT INTO EMPLOYEE(EMPLOYEE_ID,NAME,SALARY) VALUES(103,'Den',11000);

SELECT * FROM EMPLOYEE;

EMPLOYEE_ID NAME SALARY

100 Jennifer 4400

100 Jennifer 4400

101 Michael 13000

101 Michael 13000

101 Michael 13000

102 Pat 6000

102 Pat 6000

103 Den 11000

METHOD-1: Using GROUP BY Function

GROUP BY clause is used with SELECT statement to collect data from

multiple records and group the results by one or more columns. The GROUP

BY clause returns one row per group. By applying GROUP BY function on all

the source columns, unique records can be queried from the table.

Below is the query to fetch the unique records using GROUP BY function.

Query:

SELECT EMPLOYEE_ID,

 NAME,

 SALARY

FROM EMPLOYEE

GROUP BY EMPLOYEE_ID, NAME, SALARY;

Result:

EMPLOYEE_ID NAME SALARY

100 Jennifer 4400

101 Michael 13000

102 Pat 6000

103 Den 11000

METHOD-2: Using ROW_NUMBER Analytic Function

The ROW_NUMBER Analytic function is used to provide consecutive

numbering of the rows in the result by the ORDER selected for each

PARTITION specified in the OVER clause. It will assign the value 1 for the first

row and increase the number of the subsequent rows.

Using ROW_NUMBER Analytic function, assign row numbers to each unique set of

records.

Query:

SELECT EMPLOYEE_ID,

 NAME,

 SALARY,

 ROW_NUMBER() OVER(PARTITION BY EMPLOYEE_ID,NAME,SALARY ORDER BY

EMPLOYEE_ID) AS ROW_NUMBER

FROM EMPLOYEE;

Result:

EMPLOYEE_ID NAME SALARY ROW_NUMBER

100 Jennifer 4400 1

100 Jennifer 4400 2

101 Michael 13000 1

101 Michael 13000 2

101 Michael 13000 3

102 Pat 6000 1

102 Pat 6000 2

103 Den 11000 1

Once row numbers are assigned, by querying the rows with row number 1 will give

the unique records from the table.

Query:

SELECT EMPLOYEE_ID, NAME, SALARY

FROM(SELECT

 EMPLOYEE_ID,

 NAME,

 SALARY,

 ROW_NUMBER() OVER(PARTITION BY EMPLOYEE_ID,NAME,SALARY ORDER BY

EMPLOYEE_ID) AS ROW_NUMBER

 FROM EMPLOYEE)

WHERE ROW_NUMBER = 1;

Result:

EMPLOYEE_ID NAME SALARY

101 Michael 13000

100 Jennifer 4400

102 Pat 6000

103 Den 11000

2. How to delete DUPLICATE records

from a table using a SQL Query?

Consider the same EMPLOYEE table as source discussed in previous question

METHOD-1: Using ROWID and ROW_NUMBER

Analytic Function

An Oracle server assigns each row in each table with a unique ROWID to

identify the row in the table. The ROWID is the address of the row which

contains the data object number, the data block of the row, the row position

and data file.

STEP-1: Using ROW_NUMBER Analytic function, assign row numbers to each unique set

of records. Select ROWID of the rows along with the source columns

Query:

SELECT ROWID,
 EMPLOYEE_ID,

 NAME,SALARY,

 ROW_NUMBER() OVER(PARTITION BY EMPLOYEE_ID,NAME,SALARY ORDER BY

EMPLOYEE_ID) AS ROW_NUMBER

FROM EMPLOYEE;

Result:

ROWID EMPLOYEE_ID NAME SALARY ROW_NUMBER

AAASnBAAEAAAC
rWAAA

100 Jennifer 4400 1

AAASnBAAEAAAC
rWAAB

100 Jennifer 4400 2

AAASnBAAEAAAC
rWAAC

101 Michael 13000 1

AAASnBAAEAAAC
rWAAD

101 Michael 13000 2

AAASnBAAEAAAC
rWAAE

101 Michael 13000 3

AAASnBAAEAAAC
rWAAF

102 Pat 6000 1

AAASnBAAEAAAC
rWAAG

102 Pat 6000 2

AAASnBAAEAAAC
rWAAH

103 Den 11000 1

STEP-2: Select ROWID of records with ROW_NUMBER > 1

Query:

SELECT ROWID FROM(
 SELECT ROWID,

 EMPLOYEE_ID,

 NAME,

 SALARY,

 ROW_NUMBER() OVER(PARTITION BY EMPLOYEE_ID,NAME,SALARY ORDER BY

EMPLOYEE_ID) AS ROW_NUMBER

 FROM EMPLOYEE)

WHERE ROW_NUMBER > 1;

Result:

ROWID

AAASnBAAEAAACrWAAB

AAASnBAAEAAACrWAAD

AAASnBAAEAAACrWAAE

AAASnBAAEAAACrWAAG

STEP-3: Delete the records from the source table using the ROWID values fetched in

previous step

Query:

DELETE FROM EMP WHERE ROWID IN (

 SELECT ROWID FROM(

 SELECT ROWID,

 ROW_NUMBER() OVER(PARTITION BY EMPLOYEE_ID,NAME,SALARY ORDER BY

EMPLOYEE_ID) AS ROW_NUMBER
 FROM EMPLOYEE)

WHERE ROW_NUMBER > 1);

Result:

The table EMPLOYEE will have below records after deleting the duplicates

ROWID EMPLOYEE_ID NAME SALARY

AAASnBAAEAAACrWAA
A

100 Jennifer 4400

AAASnBAAEAAACrWAA
C

101 Michael 13000

AAASnBAAEAAACrWAA
F

102 Pat 6000

AAASnBAAEAAACrWAA
H

103 Den 11000

METHOD-2: Using ROWID and Correlated subquery

Correlated subquery is used for row-by-row processing. With a normal nested

subquery, the inner SELECT query runs once and executes first. The returning

values will be used by the main query. A correlated subquery, however,

executes once for every row of the outer query. In other words, the inner

query is driven by the outer query.

In the below query, we are comparing the ROWIDs’ of the unique set of records and

keeping the record with MIN ROWID and deleting all other rows.

Query:

DELETE FROM EMPLOYEE A WHERE ROWID > (SELECT MIN(ROWID) FROM EMPLOYEE B WHERE

B.EMPLOYEE_ID = A.EMPLOYEE_ID);

Result:

The table EMPLOYEE will have below records after deleting the duplicates

ROWID EMPLOYEE_ID NAME SALARY

AAASnBAAEAAACrWAA
A

100 Jennifer 4400

AAASnBAAEAAACrWAA
C

101 Michael 13000

AAASnBAAEAAACrWAA
F

102 Pat 6000

AAASnBAAEAAACrWAA
H

103 Den 11000

The opposite of above discussed case can be implemented by keeping the record

with MAX ROWID from the unique set of records and delete all other duplicates by

executing below query.

Query:

DELETE FROM EMPLOYEE A WHERE ROWID < (SELECT MAX(ROWID) FROM EMPLOYEE B WHERE

B.EMPLOYEE_ID = A.EMPLOYEE_ID);

Result:

The table EMPLOYEE will have below records after deleting the duplicates

ROWID EMPLOYEE_ID NAME SALARY

AAASnBAAEAAACrWAA
A

100 Jennifer 4400

AAASnBAAEAAACrWAA
C

101 Michael 13000

AAASnBAAEAAACrWAA
F

102 Pat 6000

AAASnBAAEAAACrWAA
H

103 Den 11000

3. How to read TOP 5 records from a

table using a SQL query?

Consider below table DEPARTMENTS as the source data

CREATE TABLE Departments(

 Department_ID number,

 Department_Name varchar(50)

);

INSERT INTO DEPARTMENTS VALUES('10','Administration');

INSERT INTO DEPARTMENTS VALUES('20','Marketing');

INSERT INTO DEPARTMENTS VALUES('30','Purchasing');

INSERT INTO DEPARTMENTS VALUES('40','Human Resources');

INSERT INTO DEPARTMENTS VALUES('50','Shipping');

INSERT INTO DEPARTMENTS VALUES('60','IT');

INSERT INTO DEPARTMENTS VALUES('70','Public Relations');

INSERT INTO DEPARTMENTS VALUES('80','Sales');

SELECT * FROM Departments;

DEPARTMENT_ID DEPARTMENT_NAME

10 Administration

20 Marketing

30 Purchasing

40 Human Resources

50 Shipping

60 IT

70 Public Relations

80 Sales

ROWNUM is a “Pseudocolumn” that assigns a number to each row returned

by a query indicating the order in which Oracle selects the row from a table.

The first row selected has a ROWNUM of 1, the second has 2, and so on.

Query:

SELECT * FROM Departments WHERE ROWNUM <= 5;

Result:

DEPARTMENT_ID DEPARTMENT_NAME

10 Administration

20 Marketing

30 Purchasing

40 Human Resources

50 Shipping

4. How to read LAST 5 records from a

table using a SQL query?

Consider the same DEPARTMENTS table as source discussed in previous

question.

In order to select the last 5 records we need to find (count of total number of

records – 5) which gives the count of records from first to last but 5 records.

Using the MINUS function we can compare all records from DEPARTMENTS

table with records from first to last but 5 from DEPARTMENTS table which give

the last 5 records of the table as result.

MINUS operator is used to return all rows in the first SELECT statement that

are not present in the second SELECT statement.

Query:

SELECT * FROM Departments

MINUS

SELECT * FROM Departments WHERE ROWNUM <= (SELECT COUNT(*)-5 FROM

Departments);

Result:

DEPARTMENT_ID DEPARTMENT_NAME

40 Human Resources

50 Shipping

60 IT

70 Public Relations

80 Sales

5. What is the result of Normal Join,

Left Outer Join, Right Outer Join and

Full Outer Join between the tables A

& B?

Table_A

COL

1

1

0

null

Table_B

COL

1

0

null

null

Normal Join:

Normal Join or Inner Join is the most common type of join. It returns the rows

that are exact match between both the tables.

The following Venn diagram illustrates a Normal join when combining two result

sets:

Query:

SELECT a.COL as A,

 b.COL as B

FROM TABLE_A a JOIN TABLE_B b

ON a.COL = b.COL;

Result:

A B

1 1

1 1

0 0

Left Outer Join:

The Left Outer Join returns all the rows from the left table and only the

matching rows from the right table. If there is no matching row found from the

right table, the left outer join will have NULL values for the columns from right

table.

The following Venn diagram illustrates a Left join when combining two result sets:

Query:

SELECT a.COL as A,

 b.COL as B

FROM TABLE_A a LEFT OUTER JOIN TABLE_B b

ON a.COL = b.COL;

Result:

A B

1 1

1 1

0 0

NULL NULL

Right Outer Join:

The Right Outer Join returns all the rows from the right table and only the

matching rows from the left table. If there is no matching row found from the

left table, the right outer join will have NULL values for the columns from left

table.

The following Venn diagram illustrates a Right join when combining two result sets:

Query:

SELECT a.COL as A,

 b.COL as B

FROM TABLE_A a RIGHT OUTER JOIN TABLE_B b

ON a.COL = b.COL;

Result:

A B

1 1

1 1

0 0

NULL NULL

NULL NULL

Full Outer Join:

The Full Outer Join returns all the rows from both the right table and the left

table. If there is no matching row found, the missing side columns will have

NULL values.

The following Venn diagram illustrates a Full join when combining two result sets:

Query:

SELECT a.COL as A,

 b.COL as B

FROM TABLE_A a FULL OUTER JOIN TABLE_B b

ON a.COL = b.COL;

Result:

A B

1 1

1 1

0 0

NULL NULL

NULL NULL

NULL NULL

NOTE: NULL do not match with NULL

6. How to find the employee with

second MAX Salary using a SQL

query?

Consider below EMPLOYEES table as the source data

CREATE TABLE Employees(

 EMPLOYEE_ID NUMBER(6,0),
 NAME VARCHAR2(20 BYTE),

 SALARY NUMBER(8,2)

);

INSERT INTO EMPLOYEES(EMPLOYEE_ID,NAME,SALARY) VALUES(100,'Jennifer',4400);
INSERT INTO EMPLOYEES(EMPLOYEE_ID,NAME,SALARY) VALUES(101,'Michael',13000);

INSERT INTO EMPLOYEES(EMPLOYEE_ID,NAME,SALARY) VALUES(102,'Pat',6000);

INSERT INTO EMPLOYEES(EMPLOYEE_ID,NAME,SALARY) VALUES(103,'Den', 11000);

INSERT INTO EMPLOYEES(EMPLOYEE_ID,NAME,SALARY) VALUES(104,'Alexander',3100);

INSERT INTO EMPLOYEES(EMPLOYEE_ID,NAME,SALARY) VALUES(105,'Shelli',2900);

INSERT INTO EMPLOYEES(EMPLOYEE_ID,NAME,SALARY) VALUES(106,'Sigal',2800);

INSERT INTO EMPLOYEES(EMPLOYEE_ID,NAME,SALARY) VALUES(107,'Guy',2600);

INSERT INTO EMPLOYEES(EMPLOYEE_ID,NAME,SALARY) VALUES(108,'Karen',2500);

SELECT * FROM Employees;

EMPLOYEE_ID NAME SALARY

100 Jennifer 4400

101 Michael 13000

102 Pat 6000

103 Den 11000

104 Alexander 3100

105 Shelli 2900

106 Sigel 2800

107 Guy 2600

108 Karen 2500

METHOD-1: Without using SQL Analytic Functions

In order to find the second MAX salary, employee record with MAX salary needs to

be eliminated. It can be achieved by using below SQL query.

Query:

SELECT MAX(salary) AS salary FROM Employees WHERE salary NOT IN (

SELECT MAX(salary) AS salary FROM Employees);

Result:

SALARY

11000

The above query only gives the second MAX salary value. In order to fetch the

entire employee record with second MAX salary we need to do a self-join on

Employee table based on Salary value.

Query:

WITH

TEMP AS(

 SELECT MAX(salary) AS salary FROM Employees WHERE salary NOT IN (

 SELECT MAX(salary) AS salary FROM Employees)

)

SELECT a.* FROM Employees a JOIN TEMP b on a.salary = b.salary

Result:

EMPLOYEE_ID NAME SALARY

103 Den 11000

METHOD-2: Using SQL Analytic Functions

Query:

The DENSE_RANK is an analytic function that calculates the rank of a row in

an ordered set of rows starting from 1. Unlike the RANK function, the

DENSE_RANK function returns rank values as consecutive integers.

SELECT Employee_Id,

 Name,

 Salary

FROM(

 SELECT Employees.*,

 DENSE_RANK() OVER(ORDER BY Salary DESC) as SALARY_RANK

 FROM Employees)

WHERE SALARY_RANK =2

Result:

EMPLOYEE_ID NAME SALARY

103 Den 11000

By replacing the value of SALARY_RANK, any highest salary rank can be found easily.

7. How to find the employee with

third MAX Salary using a SQL query

without using Analytic Functions?

Consider the same EMPLOYEES table as source discussed in previous

question

In order to find the third MAX salary, we need to eliminate the top 2 salary records.

But we cannot use the same method we used for finding second MAX salary (not a

best practice). Imagine if we have to find the fifth MAX salary. We should not be

writing a query with four nested sub queries.

STEP-1:

The approach here is to first list all the records based on Salary in the descending

order with MAX salary on top and MIN salary at bottom. Next, using ROWNUM

select the top 2 records.

Query:

SELECT salary FROM(
SELECT salary FROM Employees ORDER BY salary DESC)

WHERE ROWNUM < 3;

Result:

Salary

13000

11000

STEP-2:

Next find the MAX salary from EMPLOYEE table which is not one of top two salary

values fetched in the earlier step.

Query:

SELECT MAX(salary) as salary FROM Employees WHERE salary NOT IN (

 SELECT salary FROM(

 SELECT salary FROM Employees ORDER BY salary DESC)

 WHERE ROWNUM < 3
);

Result:

SALARY

6000

STEP-3:

In order to fetch the entire employee record with third MAX salary we need to do a

self-join on Employee table based on Salary value.

Query:

WITH

TEMP AS(

 SELECT MAX(salary) as salary FROM Employees WHERE salary NOT IN (

 SELECT salary FROM(

 SELECT salary FROM Employees ORDER BY salary DESC)

 WHERE ROWNUM < 3)

)

SELECT a.* FROM Employees a join TEMP b on a.salary = b.salary

Result:

EMPLOYEE_ID NAME SALARY

102 Pat 6000

In order to find the employee with nth highest salary, replace the rownum value with n in

above query.

	1. How to select UNIQUE records from a table using a SQL Query?
	2. How to delete DUPLICATE records from a table using a SQL Query?
	3. How to read TOP 5 records from a table using a SQL query?
	4. How to read LAST 5 records from a table using a SQL query?
	5. What is the result of Normal Join, Left Outer Join, Right Outer Join and Full Outer Join between the tables A & B?
	6. How to find the employee with second MAX Salary using a SQL query?
	7. How to find the employee with third MAX Salary using a SQL query without using Analytic Functions?

